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Abstract
We find transformation matrices allowing us to express a noncommutative
three-dimensional harmonic oscillator in terms of an isotropic commutative
oscillator, following the ‘philosophy of simplicity’ approach. Noncommutative
parameters have a physical interpretation in terms of an external magnetic
field. Furthermore, we show that for a particular choice of noncommutative
parameters there is an equivalent anisotropic representation, whose
transformation matrices are far more complicated. We indicate a way to obtain
the more complex solutions from the simple ones.

PACS numbers: 11.15.−q, 02.40.G, 03.65.F, 03.65.G

String theory results [1, 2] have generated a revival of interest in field theory in a
noncommutative geometry [3]. A simpler insight into the role of noncommutativity in field
theory can be obtained by studying solvable models of noncommutative quantum mechanics
[4–6].

Recently, we have presented [7] the description of the noncommutative harmonic oscillator
in two dimensions in terms of an isotropic commutative oscillator in an external magnetic
field. This interpretation is made possible by the existence of a simple representation of the
noncommutative coordinates in terms of the canonical ones. There are many other possible
representations of the noncommutative algebra in terms of two Heisenberg algebras [8].
Nevertheless, all of them fall into two groups: those leading to a set of anisotropic oscillators,
and others leading to an isotropic oscillator. This correspondence indicates that, in solving
an explicit model, one should always look for the simplest form of the solution. As far as
two-dimensional models are concerned, the choice of a particular solution may seem to be of
less importance. However, it becomes very important in higher dimensions where the set of
equations is far more complicated and finding a simple way of solving it becomes essential.

In this letter, we are going to adopt the philosophy of simplicity and point out its advantage
in describing the three-dimensional noncommutative harmonic oscillator.

As an introduction we give a brief review of the way in which a noncommutative system
can be transformed into an equivalent commutative form. This approach is shown to be
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equivalent to the introduction of the Moyal ∗-product [9–11], which is the usual way to
introduce noncommutativity. One starts with the set of noncommutative coordinates (x, p) of
position and momentum satisfying the following commutation relations:

[xk, xj ] = i�kj (1)

[pk, pj ] = iBkj (2)[
xk, pj

] = iδk
j (3)

where Θ and B are matrices whose elements measure the noncommutativity of coordinate and
momenta, respectively. We shall represent noncommutative variables as a linear combination
of commutative coordinates (�α, �β) in a six-dimensional phase space( �x

�p
)

=
(

a b
d c

)( �α
�β
)

. (4)

The 6 × 6 transformation matrix is written in terms of 3 × 3 blocks a, b, c, d. The four
submatrices satisfy

abT − baT = Θ (5)

cdT − dcT = −B (6)

caT − bdT = I (7)

following from the commutation relations (1)–(3). MT denotes the transpose of a 3 × 3
matrix M.

As a specific model we choose a three-dimensional, noncommutative, harmonic oscillator
described by the Hamiltonian

H ≡ 1
2

[
p2

i + x2
i

]
(8)

where we set classical frequency and mass to unity. One can verify that the attempt to solve
the system of equations (5)–(7) in full generality (meaning the most general form of the
transformation matrices), already in two dimensions, led to a complicated, but still tractable,
set of equations [7, 8]. In three dimensions things only get considerably worse. Thus, we apply
the above-mentioned philosophy of simplicity. First of all, we note that in three dimensions
antisymmetric matrices Θ and b can always be written as

�ab ≡ εabcθc Bab ≡ εabcBc. (9)

On physical grounds the isotropic solution, having spherical symmetry, requires the
equivalence of all three directions. Therefore, let us impose θc ≡ θ and Bc ≡ B, ∀ c.
Furthermore, in analogy with two dimensions, let us choose matrices a, b, c, d to be

a = aI c = cI b = bK d = dK (10)

where I is the identity and K is an unknown matrix. The explicit form of K is found to be

K =
0 1 0

0 0 1
1 0 0

 . (11)

Inserting ansatz (10) into (5) and (6) leads to the solutions for the parameters as

b = −θ

a
d = B

c
. (12)
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The remaining equation (7) gives

ac +
Bθ

ac
= 1 (13)

which determines the parameters c and d as

c = 1

2a
(1 +

√
1 − 4θB) ≡ 1

2a
(1 +

√
κ) (14)

d = a

2θ
(1 − √

1 − 4θB) ≡ a

2θ
(1 − √

κ). (15)

The three-dimensional solutions follow the same pattern as in two dimensions [7]. The
two-dimensional isotropic representation is characterized by the presence of a mixed term in
the Hamiltonian, which is reminiscent of the noncommutativity of the system. We find that
such a term is also present in this case and is of the form

Hmixed = 1
2 (−θα1β2 + Bα2β1) + · · · . (16)

In [7] the mixed term led to the coupling of the noncommutative parameters to the
components of the angular momentum operator. Thus, we were able to interpret the
noncommutativity as a ‘magnetic effect’. In order to reproduce, if possible, the same
interpretation in (16) one has to impose the condition

B = θ (17)

which allows one to rewrite the mixed term as

Hmixed = − 1
2θiLi (18)

where �L is the angular momentum operator. We arrive at the isotropic representation of the
noncommutative three-dimensional harmonic oscillator:

H = hα(αi)
2 + hβ(βi)

2 − 1
2
�θ · �L (19)

hα ≡ a2

2

[
1 +

1

4θ2
(1 − √

κ)2

]
(20)

hβ ≡ θ2

2a2

[
1 +

1

4θ2
(1 +

√
κ)2

]
(21)

where κ ≡ 1 − 4θ2. Hamiltonian (20) is invariant under spatial rotations. This fact permits
us to choose a new set of coordinates with one axis aligned with �θ . In the rotated frame
αi → Rijαj , βi → Rijβj . Hamiltonian (19) takes a simpler looking form

H = hα(αi)
2 + hβ(βi)

2 −
√

3
2 θLθ . (22)

The explicit form of the rotation matrix is given by

R = 1√
6


√

2
√

2
√

2

−√
3

√
3 0

−1 −1 2

 . (23)

The spectrum of the system is

En+n− = ω
(
n+ + n− + n0 + 3

2

)
+ (n+ − n−)

√
3

2 θ (24)

where m ≡ n+ − n− is the ‘magnetic’ eigenvalue of the Lθ component of the angular
momentum operator, and

ω ≡ 2
√

hαhβ (25)
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ω being expressed in terms of units of classical frequency. The explicit solution gives the
frequency of the harmonic oscillator equal to the classical frequency. The noncommutative
effects are pure magnetic field effects in (19). The results are identical to the two-dimensional
case for the special choice θ = B. In three dimensions, however, this choice is imposed by
the form of the mixed Hamiltonian and is the only possible solution which gives isotropy of
the Hamiltonian. One can rewrite the spectrum as

En+n− = ω+
(
n+ + 1

2

)
+ ω−

(
n− + 1

2

)
+ ω

(
n0 + 1

2

)
(26)

provided the following identifications are in order:√
3θ = (ω+ − ω−) (27)

ω = 1
2 (ω+ + ω−). (28)

The above spectrum is one of three one-dimensional, anisotropic oscillators. Thus, the
three-dimensional noncommutative harmonic oscillator has both isotropic and anisotropic
commutative representations. In order to prove the existence of solutions for the
transformation matrices of the anisotropic representation, without explicitly solving the
complex set of equations (5)–(7), one can proceed in the following way. Let us first find
the relation among the commutative coordinates of the two different representations by defining

Q1 = A1α1 − A2β2 Q2 = −A1α2 + A2β1 Q3 = Cα3 (29)

P1 = A1α2 + A2β1 P2 = −A1α1 − A2β2 P3 = Dβ3. (30)

The parameters in (30) are determined by the requirement that the above redefinitions
turn Hamiltonian (19) into its anisotropic form

H = 1
2ω+

(
Q2

1 + P 2
1

)
+ 1

2ω−
(
Q2

2 + P 2
2

)
+ 1

2ω
(
Q2

3 + P 2
3

)
(31)

which gives the solutions

A1 =
√

hα

ω
A2 =

√
hβ

ω (32)
C =

√
2A1 D =

√
2A2.

The relation between the anisotropic coordinates ( �Q, �P ), written as a ‘column matrix’ Q,
and isotropic ones ( �α, �β) can be written in matrix form as( �α

�β
)

=
(

A2L1 A2L2

−A1L2 A1L1

)( �Q
�P

)
. (33)

The above equation is written in the block form with 3 × 3 matrices L1, L2 given by

L1 =
1 0 0

0 −1 0

0 0
√

2

 L2 =
0 −1 0

1 0 0
0 0 0

 . (34)

The relation between the noncommutative coordinates (after rotation) and the isotropic
set of solutions can be written in block form as( �x

�p
)

=
(

aRT bKRT

dKRT cRT

)( �α
�β
)

. (35)

On the other hand, the anisotropic transformation matrices relate the noncommutative
coordinates to ( �Q, �P ) as( �x

�p
)

=
(

ã b̃
d̃ c̃

)( �Q
�P

)
. (36)
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Comparing (36) to (35) with the help of (33), one obtains solutions

ã = aA2̃L1 − bA1̃L4 b̃ = aA2̃L2 + bA1̃L3 (37)

c̃ = dA2̃L4 + cA1̃L1 d̃ = dA2̃L3 − cA1̃L2 (38)

where the 3 × 3 matrices L̃i , i = 1, 2, 3, 4, are found to be

L̃1 = 1√
6


√

2
√

3 −√
2√

2 −√
3 −√

2√
2 0 2

√
2

 L̃2 = 1√
6

−√
3 −√

2 0√
3 −√

2 0

0 −√
2 0

 (39)

L̃3 = 1√
6


√

2 −√
3 −√

2√
2 0 2

√
2√

2
√

3 −√
2

 L̃4 = 1√
6


√

3 −√
2 0

0 −√
2 0

−√
3 −√

2 0

 . (40)

Exploiting the explicit solutions (20), (21) and (32), one can rewrite the anisotropic set of
solutions in terms of isotropic ones:

ã =
√

ac

2

(̃
L1 +

θ

ac
L̃4

)
b̃ =

√
ac

2

(̃
L2 − θ

ac
L̃3

)
(41)

ã = c̃ d̃ = −̃b.

One can verify that the above set of solutions satisfies basic requirements (5)–(7). As
already advocated, a comparison of the isotropic solutions with the anisotropic ones confirms
the validity of the ‘philosophy of simplicity’ approach.

One may wonder if there are other solutions leading to the same isotropic representation.
Let us assume that the transformation matrices are of the same form as before, but with
different matrix elements. For example, the matrices a and c are aij = a(i)δij (no summation
over the i index), while matrices b and d are given by

b =
 0 b12 0

0 0 b23

b31 0 0

 d =
 0 d12 0

0 0 d23

d31 0 0

 . (42)

Without going into details, the Hamiltonian following from the above solution is the
generalization of (19) with different coefficients hi , i = 1, . . . , 6, multiplying canonical
coordinates. The isotropy of the system requires the equivalence of those coefficients for
the coordinates α and β, respectively. This requirement inevitably leads to the condition
(17). Thus, we conclude that there are no other isotropic solutions different from those
described in this letter. We have thus shown that the three-dimensional noncommmutative
harmonic oscillator can be represented as an isotropic oscillator coupled to an external
magnetic field, generated by space noncommutativity. This representation is based on a
very simple set of transformation matrices relating noncommutative to canonical coordinates.
An alternative representation is also possible in terms of three one-dimensional anisotropic
harmonic oscillators. The second set of solutions is far more complicated and difficult to
obtain solving (5)–(7). Nevertheless, we have described an indirect way of finding these
solutions. Their explicit form was needed to support the philosophy of simplicity approach
described in this letter.
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